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,\bstract-The theory oflero energy modes (lEM) for .'-field (£(1 u) finite clements is presented.
A systematic study has been made on the numerical stability of the mi~ed element and the hybrid
element rcsr~'l:ti\'Cly.

I. INTRODUCTION

The investigation into the stability of the numerical solutions tms been a major problem in
the development of multi-field (or multi-variable) elements. It is true that some math
ematical basis for this problem has been established (Uabuska and Aziz. 1972; Brezzi.
1974; Girault and Raviart. 19X6). In particular. an inf sup condition with the constant
independent of II was presented. which is necessary and sullicient for convergence in the
precise sense and guarantees thatthc resulting discrete system has a unique solution (Arnold.
Bahuska and Oshorn. 19X4), However. heeause of its abstract concept and the complex
analysis. it has not been widely aeccptcd by engineers. who prefer to use some simpler
stability conditions as guidelilll.:s in the development and application of multi-field elements
(Tong and Pi~ln, 1969; Zienkiewiez et al,. 19H6; Zienkiewicz and Lefebure. 19H7).

Frum the mech~tllicspoint of view. the stability problem is really connected with ZEM.
In this paper we call the clement without ZEM a stable one. and a tinite clement system is
regarded as stable if it docs not contain any ZEM and that the resulting discrete equations
possess a unique solution, In order to guarantee the stability of hybrid c1eml:nts. Pian and
Chen (1910) proposed a method for the suppression of zero energy displacement modes
(ZEM(u», The method was generalized to 2-lield mixed;hybrid cleml:nts by Wu (1990),
who also discussed in greater detail the definition, the analysis and control principles for
ZEM. In this paper, the theory of ZEM will be further generalized to 3-ficld elements.
Unlike the 2-ticld clements. two types of ZEM (ZEM(a) for stress and ZEM(u) for dis
placements) can appear simultaneously for a 3-llcld element. Furthermore, the stability
requirement for the mixed clement is somewhat lower than that for the hybrid clement in
the 3-ficld situation, and accordingly the stability problem for the mixed clements will be
considered first in our discussions.

1. STABILITY CONDITION OF 3·FIELD MIXED ELEMENTS

We denote the strain. stress and displacement trial functions of a 3-ficld mixed finite
clement as 1:. (f and u respectively. Correspondingly. there exist three sets of clement tri~ll

functions: E == II:}. L == I(f} and U == Iu;'. In order to make the discussion easier on the
ZEM. it would be appropriate to eliminate the rigid-body displacements of an clement from
u. and then the remaining ones in u. which correspond to the non-zero clement strain. arc
denoted by u.e V'. == Iu.}. The Hu-Washizu energy functional and its various modified
or generalized forms (Buller. 1979; Oden and Raddy. 1983) may all be expressed. for an
individual clement without rigid-body displacement. as
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( Ii

~kn: the tirst term. i.e. the ekment strain energy. ~ <u:. (> ~J,d;Iu: de (/" ::: clement
domain. c ::: elastic matrixi is a positive definite quadratic form of e. while the second term
Ide. a) ::: - J,< e l a de is a bilinear integral term forthe pair ofvariables (I:. a). and the third
term l:la. tl.) is an algebraie sum of some bilinear integral terms for the pair (a. u.) (e.g.
J,e (TI( Ou. i de etc.. where 0 = strain ditferential operator). Other terms which are rdated
to the applied load and prescribed displacement. which are imkpendent of I)Ur ZEM
analysis. have not been included in the functional ( I).

The ddinition of ZE:'vl for 2-tield finite elements has been presented by Wu ( 19tJOl.
and the mechanical essence is to examine whether the element trial function is able to

provide the element with an energy contribution. Now in the more general case of the ~

tkld mixed ekment we have tht: t~)llowing:

Dc/illiliull. A non-zero strain iiE E is said to be the Zl'ro energy strain mode ZEM(i:) if
the functional increment

(2l

and a non-/ero stress nE ~ is said to he the zero elll:rgy stress mode ZEM (IT) if the functional
itH.:rel11en t

(Ii

and a tHHl-/ern displ,ll'cIllCnl II E U. is said to bc the len) encrgy displaccment mode ZEM (II)

if thc functional increment

(4)

In aeconbnee with thesc ddinitions. it is evident that if

the mixed c1cment has no ZFM(I:); and

V(I:,tl.)EExU., L\rr[trJ=,,() => tr=O

the mixed clement has no ZEM(tr). Finally, if

V(I:, a) E E x L. ~rr[u.1 = 0 => u. = 0

(5)

(6)

the mixed clement has no ZEM(II). Obviously the 3-fkld mixed clement without any ZEM
becomes a stahle one when the conditions (5) -(7) are satisfied simultaneollsly.

Considering the functional (I), for an arbitrary strain increment g' to be independent

of I:,

(X)

Note that sinee the lirst two terms in (X) arc positive definite quadratic forms of the strain.

it follows that

V(tr,U.)ELXU., ~rr[l:'I=O => e'=O

and therefore condition (5) is constantly satisllcd by the mixed clemcnt. By the way. the
samc analysis is also valid for the 3-lIckl hybrid dement. Thus we can assert that tlte 3~rielcl

./inite dell/e!lf hased 011 Ihe lfll-Washi::u principle has no ZEA/(I:). On the other hand. it is
easy to lind that. for the mixed clcmcnt based on (I).
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and

Thus the conditions (6) and (7) can be stated in another manner:

and
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(9)

( 10)

respectively. (n conclusion. the satisfaction of the above conditions will prevent the appear
ance of ZEM(o") and ZEM(u); (9) and (10) are therefore tire stability conditions of tire 3
field mixed element.

3. MIXED FORMULATION AND KEEPING RANK CONDITION

The trial functions ofa 3-tield mixed element are defined as follows. The element strain

Il = !{Ir#.. r#. =element strain parameter. ( II)

Here r#. may bc the nodal strain valuc or the internal parameter of the clement strain. We
will see later that :z can always be eliminated at the element level without any extra
supplementary condition. So we prefer to take :z as the internal pantmeter of the mixed
clement in order to reducc the size of resulting systcm equations. Similarly. the element
stress is expressed as

(1 = q,fJ. fJ =element nodal stress

and the clement displacement as

u = Nq. q = element nodal displacement.

( 12)

(13)

WI: assumc that at Il:ast r nodal displacl:mcnts must be constrainl:d in q to prevent the
element rigid-body motion. and thc remaining ones in q arc denoted by q•. Accordingly.
instead of (13) the displacement trial function will be rewritten as

( 14)

By means of (II). (12) and (14), the functional (I) may be discretized and expressed as

From the stationary condition bIt = O. we obtain n set of discrete equations

A:z +FfJ = O}
TF r#.+G.q. = 0 .

G~fJ = 0

( 15)

(16)

In accordance with the positive definite qundratic form (CIl.Il) in (I). the symmetric matrix
A = I,,,, !{ITc!{I dv must be a positive definite one (provided that !{I does not violate the well
known independence requirement on the basis function), As a result the strain parameter
r#. can be eliminated from (16). and we obtain the following mixed discrete equations
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(17)

Here {~} plays the role of the basic discrete parameters of a 3-field mixed element without

the rigid body DOF. while x becomes a related parameter. Obviously the resulting discrete
matrix in (17) is non-positive definite. but it is invertible provided that the mixed element
has no ZEM.

With reference to formulation (15). the stability condition (9) is now

or equivalently.

At the same time condition (\0) ean he expressed as

or equivalently.

(;.(1. = 0 =:> q.:= O.

=:> p=o (18)

( 19)

(20)

(19) and (:!O). whieh ensure that the clement has no ZEM(a) and ZEM(II) n:spectivdy. arc
to be called the keeping rank conditions or the 3-lidd mixed dement. which are the necessary
and sutlicient conditions for guaranteeing the absence of ZEM at the dement level.

If we designate

", = dim (at)

till = dim (p)

",/. = dim (q.)

then there exist two necessary conditions for meeting (19) and (20) respectively. They are

(21)

and

(22)

In short. the positive integers n,. "II and "" have to satisfy the parameter matclling co"ditions

(:!J)

They are consistent with the result given by Zicnkiewicz and Lefebure (1987). The matching
conditions are very useful in the design of the mixed models even though they arc just a set
of necessary conditions for the clement stability.
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4. ZEM(a) EXHIBITION AND CONTROL

When condition (19) cannot be satisfied. no ZEM(a) will appear. and

We denote the general solution of the homogeneous equation in (19) by

where ~ is composed on no arbitrary parameters and can be expressed as
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(24)

(25)

PI 0 0

0 P2
"

~= + 0 + ... + = L~(I)· (26)

0

0 0 P••

In terms of (25). (26) and the stress trial function (\2). the no ZEM (a) can be independently
exhibited by

The sum of them should be

et(l) = f/JT{I~(i). i = 1.2•.... fin. (27)

(28)

(n order to suppress the above ZEM(I1). a control strain £.\ = "'A(tA is employed and
added to the primary one: £ = "'1%. and we have a modified strain trial function

(29)

Here the basis", and "'lI' followed by £ and £iI.. are linearly independent of each other. hence
the set of strains

Tlreorem l. Let d be tire ZEM(a) appeariflg in tire mixed element based on (t.a.u.). If
Illl prO/'ides d with an energy control:

(30)

the modified mixed element based on (£m' a, u.) has no ZE,\I(a).

Proof Since £.1 is independent of £. the energy constraint on a:

is equivalent to

{
V(£.U.)EEX U•• 11(£.a)+/2(a,u.) = 0

V£lI E Ell. I, (£.1. a) == O.

(3\)

(32a)

(32b)
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From (32a) we obtain the non-zero solution a = d as exhibited by (28), and (32b) is then

With the introduction of the energy control (30) we have d = a = O. The result is

(33 )

i.e. the mixed element based on (em' a, u*) has passed the stability condition (9) and has no
ZEM(a).

It is easy to choose a suitable control strain e
c
\ for a in (28). We denote

(34)

where the control matrix F, is a square matrix of order flo if dim (~~) = flo. By regulating
the strain basis function t/J.\ such that IFcI "# 0, then the energy control (30) can be achieved.
A reliable trick for the choice of t/Jc\ may be suggested here. If a= q,T11P = cf,p. then it is
only necessary to take e.\ = eP7.,\. This is because the resulting control matrix

must hc a positive dclinite one.

5. ZEM(II) EXIIIIIITION AND CONTROl.

When a 3-ficld mixed clement docs not pass the keeping rank condition (20), it has 11"

ZEM(u), and

(5)

We may denote the non-trivial solution of the homogeneous equation in (20) as

(36)

[n aecordal1l.:e with the displacement function (14) the ZEM (u) should be of the form

and the sum of them

it = Lit(i) = N*TA

(37)

(8)

In order to suppress the possible ZEM(u). a control stress a~EL" == {a.\: is introduced
into the primary one: a E L Of course a,\ and a should be linearly independent of each
other. and the modified stress
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Theorem II. Let ube the ZEAJ(u) which appear in the mixed element based on (£. a. u.).
((a,\ pro/"ided Uun energy control:

(39)

the modified mixed element bused on (£. am' u.) hus no ZEJf(u).

Proof The zero energy constrain on u. :

is equivalent to

(40)

I;(a. u.) = 0

I z(a,1. u.) = o.
(4Ia)

(41 b)

From (4Ia) we ontain a non-zero solution u. = U. and (4Ib) is then

Under thc cnc.:rgy wntrol (:\9). II = tl. = O. Finally.

(42)

This rncans that thc c1cment nased on (C. IT",. u.) has passed the stanility condition (10) and
has no ZEM(II).

Lc.:l

(43)

Regulating the basis function 1',\ of the control stress tI,\ such that IG.I ¥- O. then the energy
control (39) c:tn bc achicved.

6. J-FtELD IlYBRID ELEMENT

Now we consider another kind of 3-field finite e1ement--the 3-licld hybrid clement.
for which. obviously. the definitions of ZEM in Section 2 arc still valid. In the present case.
like the strain paramder :x. the stress parameter fJ will also be tre<lted <IS a loc<ll p<lrameter
to be eliminated at the c1ementlcvcl. Since II will no longer play the role of the b<lsic discrete
par<lmeter. it is possible to set up an equilibrium equation for the hybrid clement in terms
of the displ<lcement p<lrameter q. only.

In the mixed simultaneous eqn (17). the following rcl<ltionship is included.

(44)

The requirement for obtaining the unique solution of fJ is that the homogeneous eq u<ltion
concerning eqn (44) has only one trivial solution. i.e.

(45)
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The matrix..\ I is a positive definite one. hence (45) is equivalent to the following condition :

Fp = 0 =- IJ = O. 1461

In respect of the 3-field mi'(cd element. (46) is an e'(tra condition which ensures that the
local parameter p can he completely determined by q* and eliminated at the element level.
It is found that (46) is sutlkient to satisfy (19). Therefore. instead of the keeping rank
condition of a mi'(ed eh:ment (19). (46) should be a kccpiflf/ rank cOlldifivn (~r a 3-field
Inhrid elellll'lIf. Besides. it has been confirmed that another keeping rank condition of a
mixed dement (20) is still suitable for the present hybrid dement.

Note that there exists a necessary condition for satisfying (46). i.e. tl, ~ tl". So the
parameter mat\:hing condition (23) should be amended for a 3-tidd hybrid element. as

(47)

The condition (46) may equivalently be expressed by

VXE fx}. xrFII = 0 = II = O.

or in an energy form

(4X)

Fqllation (4X) together with (10) would he the .I'll/hi/ify ('ollclitioll or fire 3-/ield Ityhricl
('/('I/I('/lf. lJmkr condition (46) w..: hav..:

(49)

By suhstitlllioll of this itl() (Iii) w..: ohtain the ..:qllilihrium ..:qllatioll of th..: hyhrid ..:kment
without rigid-hody DOl-' as follows:

(50)

The exhihition and control of the ZEM appearing in the hyhrid ..:kments on the whole arc
the sam..: as those in the case ofmix..:d e1cm..:nts ..:xcept thal when we detennin..: the ZEM(a)
of a 3-ticld hyhrid clement by using formula (25). T,di is no long..:r the non-zero solution
of the equation

[~~ll ;: 0 but of the equation F/I = O.

The k..:y results obtain..:d in the above sections arc summed up in Table I.

7. EXAMPLE

A simpl..: bUl complete example is presented to illustrate the whole process of the ZEM
analysis. We consida a 211 x 2h rectangular 3-ficld hybrid clement in Fig. I for the clastic
plane problem. which possesses a constant strain. a constant stress and a bilinear dis
placement trial function:
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Table I. ZEM of the 3-field mixed and hybrid elements

Energy It= !<cl.I> ... /,(I.II')+/~(II'.u.) = !2TA2+2TFII+IITG.q.
fum:tiunal

213

Classification

Element
fonnulation

(without
rigid-body

DOF)

Element
stability

condition

Keeping
rank

condition

Parameter
matching
condition

3-field mixed element

[
-FTA-1F G·]{"}=o

G~ 0 q.

2=-A-'F/I

jV(I.U.)EEX C••

1,(6.1I')+/~(II'.u.)= 0 =
VII'Er. 1~(II'.u.)=O =

11'=0

U. = 0

3-field hybrid element

[G~(FTA-'F)-IG.]q. = 0

II = (FTA-'n-'G.q.

2=-A-'FII

{

VIEE. 1,,1.11')=0 = 11'=0

VII'Er. 1~(II'.u.)=O = u.=O

{
FII = 0 = II = 0

G.q. = 0 = q. = 0

ZEM(I1)
formul;1

a lid
conlrol

ZEM(tI)
formula

"ntl
conlrol

{

d ,;, ,pT~d. where

t~II = non-zero solution of

(Theorem I) Take a control str"in I~. such
thaI

1'(",.d)=O = d=O

{

Ii ~ N.TA. where

T.ci = non-zero solution of

G.q. = 0

(Theorem II) T"ke" conlrol stress tI~. such
that

/ 1 (tI.,. Ii) = 0 = ia = 0

d = ,pT~d. where
T~d = non-zero solution of

(Theorem I) Take a control strain I~. such that

1,(I~.d)=O = d=O

{
ia = N. T.ci. where

T.ci = non-zero solution of

G.q. = 0

(Theorem II) T"ke" control stress tI~. such
th"t

1~(tI.,.ia) = 0 = ia = 0

y

t
I

t-
4 3

----- x
A.

2

I

I -I- I -
Fig. I. Constrained rectangular 3-field hybrid element.
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,~F} = [I ]{::} = "n.
en I J: 1

C1 = {:: I= [I ]{: 'I = rj)fJ

an I fl.

(51 )

(52)

(53)

The minimum nodal displacement constraints to prevent the clement rigid-body motion
are shown in Fig. I. Accordingly. the element displacement (53) becomes

(54)

In accordance with the Hu-Washizu formulation

(55)

we have the dement matrices

A = f ",'e'" dA = 4ahc.
I'

J (57)

[

-I

G. = Lrj)1(ON.) dA = ah 0

-I

o
-I 0

-I -I

o I]
-I O.

I I

(5X)

Obviously. the keeping rank condition (46) is now satisfied. so that the hybrid clement has
no ZEM(a). On the other hand. the homogeneous eljuation G.(I. = 0 has the non-lero
solution

-I 0

q. = Tit = I 0 t·,}
I 0 111 .

0 1

So the clement has two ZEM(II), and they can be exhibited as follows:
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(b)
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\
\
\
\

1 \ _--
\-----

3

\
\
\

.J----- 2

4

\
\
\
\
\

3
7
/

I /
I /
1/

2

Fig. 2. ZEM(u) of the hybrid element based on (8. a. u.).

. {'I} . I [ b- yu= =NT =-
l1 • qq 2ab x(b-y)

The related two ZEM(u) corresponding to

ab+xy].o q. (59)

4(1) = {~} and 4(2) = {~}

,Ire shown in Figs 2a ,Ind 2b respectively.
For the control of the above two ZEM(u) a control stress with two parameters is

adopted here:

There are many possible schemes for the choice of tP,\. such as

or

In tcrms of(61) and (59) thccontrol matrix in (43) is

and the scheme cannot be used to control ZEM(u). With the scheme (62).

(60)

(61 )

(62)



226 Y. K. CHEC-';G and C. Wc

G,: #0.

So that the ZEM(lI) c)(hibited in (59) will be controlled, and the modified stress trial function
is of the form

(63)

It is notable that the requirement of n, ~ nil in the parameter matching condition (47)
cannot be satisfied by the hybrid element based on (£, (fm' u.), and the element has at least
np-n, = 5-3 = 2 ZEM(cr). Obviously. instead of (57). we now get

F -Lq,~,'" dA = -4ah

100

010

001

000

o () 0

FPm = 0 has the non-zero solution

and the ZEM(I1) would be

Two ZEM(I1) corresponding to

0] Ii I •.

x LJ = (pil.
o

(64)

are shown in Fig. 3. and it is clear that they arc orthogonal to the assumed constant strain

(a) (b)

I

t:---------- J
/

/

erO =y

Fig. 3. ZEM(I1) of the hybrid clement based on (S.l1m • u.l.
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(51). i.e. J~. t:TadA = O. Thus the stress parameter fJm cannot be eliminated and should be
solved with the displacement parameter q. simultaneously. In other words. the element
based on the trial function set (t:. tim. u.) can only become a mixed one. not a hybrid one.

For the purpose of constructing a hybrid element the above two ZEM(u) must be
suppressed. According to Theorem I and in view of (64). we choose a control strain in such
a manner.

Such that the control matrix in (34) takes the form

f .. [b~
Fe = -~. tjJT tjJ dA = -4ab 0

Wei #- 0, and the ZEM(u) have been controlled. Denoting the modified strain as:

(65)

(66)

(67)

then we can state that the 3-licld hybrid clement based on (£m, tim. u.) has neither ZEM (u)

nor ZEM(u) and must be a stable clement. Actually. it has been confirmed that this 3-ficld
hybrid element is equivalent to Pian's 5/1 stress clement (Pian. 1964) which is based on
(11"" u.) and the modified complementary energy/Reissner principle.

K. DISCUSSIONS AND CONCLUSIONS

A theory for ZEM for 3-fidd finite elements has been proposed in this paper. A
systematic study was made on mixed dements and hybrid elements based on Hu-Washizu
principle. Further discussions and explanations will be made here with regard to the
following three problems:

(a) With regard to the convergence problem of mixed/hybrid elements, mechanicians
and mathematicians tend to treat the matter differently, apart from the fundamental
requirement of the completeness of the trial functions. The latter used a rigorous
mathematical expression in the form of an inf-sup condition with the constant inde
pendent of h to be a necessary and sufficient condition for convergence and uniqueness,
while the former approached the problem from energy principles, and regarded that
the imposition ofcertain requirements would guarantee the convergence of the solution
of a discretized problem. They are
(i) stability requirements- Hu (1990), stated that the trial functions of the field vari

ables (generalized forces and generalized displacements) must be capable of
working. In other words, the trial functions should not include any ZEM which
does not contribute towards the energy functional of the system. Furthermore,
the weak continuity conditions between elements should be satisfied in order to
guarantee that relative rigid body movement exists between elements (Wu and
Cheung. 199f), and

(ii) compatibility requirements-for an element with non-conforming trial functions
for both the stresses and displacements, the energy compatibility condition pro
posed by Wu and Butler (1991) must be satisfied. This stipulates that the work
done by the non-conforming component u.. of the element displacement trial func-
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tions and the element surface force T = T(a) should be zero, i.e.

W = ~ §< T
f
U, ds = O. (68)

Otherwise U" should be deleted from the energy functional.
In this discussion. we have only considered the ZEM problem connected with

the stability requirement. not the compatibility requirement.
(b) The proposed ZEM analysis is valid for a single typical element. However. it must be

pointed out that satisfying the element stability condition, element keeping rank con
dition can only guarantee that the element will have no ZEM. it will in no way guarantee
that a system of elements will have no ZEM. For a mixed element system there is no
straightforward solution since the displacement continuity condition between elements
can suppress ZEM(u) but at the same time introduce new ZEM (a). while for the stress
continuity condition. the reverse is true. The best solution appears to be the carrying
out of a patch stability test. since it would be reasonable to say that if the patch of
elements has no ZEM. then the whole discretized system would also have no ZEM.
This is in line with the so-called local inf-sup condition with the constant independent
of" in mathematics and the mathematical basis for such a patch test was proposed by
Zhou (1986). The implementation method and the formulae for the patch stability test
of 2-tield elements has already been given by WU (1990). and there should be no
ditllculty in extending the formulae to a 3-ticld clement situation. For example. if a
patch of clement is regarded as a single clement. then the keeping rank conditions (19)
and (20) for the 3-ficld mixed elements will become the formulae for the stability test
of the patch of clements.

(c) It is common practice to introduce internal parameters;' (to define the element's
internal displacements) in order to improve the numerical characteristics of an element
(Cheung and Chen. 1988; Chell and Cheung. 1987). The intern,d displacement lield is
then

and the element energy fUllction (15) must he revised to

1 TA "L'P pl[C (" J{q.}rr=2ot ot+otr + .";.' (69)

Fortunately, no change is necessary in the ZEM analysis for this type of element except
that the following modifications will have to be observed:

G. -+ [G. GJ

and

However, if we wish to eliminate;' at the element level. then the following additional
condition must also be satisfied

G,), = () => ;, = o. (70)

It is not ditllcult to prove that (70) is in fact a suflicient condition to guarantee
that static condensation can be effected for the mixed/hybrid elements with internal
displacements.
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(d) Tht: ZEM analysis prt:sented in this paper has been made for a single e1emt:nt. For a
discrete system it would be necessary to consider the effect of element assembly and
then carry out a patch stability test (Wu. 1990) in accordance with Table I. The
above observation is certainly true for mixed elements in which both the stress and
displacement are continuous at the element interface or the common nodes ofelements.
However. in the case of 3-field hybrid elements. because the continuity ofdisplacements
at the dt:ment interface or the common nodes of elements can only prevent the appear
ance of additional ZEM(u). it is possible to conclude that provided the parameter
matching condition (47) has bt:en satisfied for the various combination of elements. the
stability for a discrete system can in fact be guaranteed by observing the keeping rank
conditions «20) and (46» of an individual hybrid element.
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