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Abstract—The theory of 7zero energy modes (ZEM) for 3-ficld (2-0 w) finite elements is presented,

A systematic study has been made on the numerical stability of the mixed element and the hybrid
element respectively.

{. INTRODUCTION

The investigation into the stability of the numerical solutions has been a major problem in
the development of multi-ficld (or multi-variable) elements. It is true that some math-
ematical basis for this problem has been established (Babuska and Aziz, 1972 Breva,
1974 Girault and Raviart, 1986). In particular, an inf sup condition with the constant
independent of /t was presented, which is necessary and sufficient for convergence in the
precise sense and guarantees that the resulting discrete system has a unique solution (Arnold,
Babuska and Osborn, 1984). However, because of its abstract concept and the complex
analysis, it has not been widely aceepted by engineers, who prefer to use some simpler
stability conditions as guidelines in the development and application of multi-ficld elements
{Tong and Pian, 1969 ; Zienkicwicz et al., 1986 Zienkiewicz and Lefebure, 1987).

From the mechanies point of view, the stability problem is really connected with ZEM.
In this paper we call the element without ZEM a stable one, and a finite clement system is
regarded as stable if it does not contain any ZEM and that the resulting discrete equations
possess a unigue solution. In order to guarantee the stability of hybrid elements, Pian and
Chen (1983) proposed a method for the suppression of zero energy displacement modes
(ZEM(u)). The method was generalized to 2-field mixed; hybrid elements by Wu (1990,
who also discussed in greater detail the definition, the analysis and control principles for
ZEM. In this paper, the theory of ZEM will be further generalized to 3-ficld elements.
Unlike the 2-ficld elements, two types of ZEM (ZEM (o) for stress and ZEM(u) for dis-
placements) can appear simultancously for a 3-ficld element. Furthermore, the stability
requirement for the mixed clement is somewhat lower than that for the hybrid clement in
the 3-field situation, and accordingly the stability problem for the mixed elements will be
considered first in our discussions.

2. STABILITY CONDITION OF 3-FIELD MIXED ELEMENTS

We denote the strain, stress and displacement trial functions of a 3-ficld mixed finite
element as ¢, o and u respectively. Correspondingly, there exist three sets of element trial
functions: E = {¢}. Z = {g} and U = {u}. In order to make the discussion castcr on the
ZEM., it would be appropriate to eliminate the rigid-body displacements of an clement from
u, and then the remaining ones in u. which correspond to the non-zero clement strain, arc
denoted by u, e Uy = {u,}. The Hu-Washizu encrgy functional and its various modified
or generalized forms (Bufler, 1979 Oden and Raddy. 1983) may ail be cxpressed. for an
individual element without rigid-body displacement, as
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nie.o.u,) = ce.ey+1,(e.a)+[-(o.u,). (hH
Here the first term. fe. the clement strain energy. ce.g) = g cedr (¢° = clement
domain. ¢ = elastic matnx) is a positive definite quadratic form of e, while the second term
I (s.0) = ‘3'“- ¢'a dris a bilinear integral term for the pair of variables (2. ¢). and the third
term /.(6.u,) is an algebraic sum of some bilinear integral terms for the pair (6. u,) (¢.g.
fee 6T (Duy) dr ete., where D = strain differential operator). Other terms which are related
to the applied load and preseribed displacement. which are independent of our ZEM
analysis. have not been included in the functional (1).

The definition of ZEM for 2-field finite elements has been presented by Wu (1991,
and the mechanical essence is to examine whether the element trial function is able
provide the element with an energy contribution. Now in the more general case of the 3-
tield mixed element we have the following :

Detinition. A non-zero strain € E is said to be the zero energy strain mode ZEM(a) if
the functional increment

Anle] = me+ €. 0,1 — (e o.uy) =0 Y(o.u,leXl x U, (2}

and a non-zero stress a € © is said to be the zero energy stress mode ZEM(a) i the tunctional
mcrement

Arje] = n(e.o+d.u,) —nle,ou,) =0 V(e udebx ', (M

and a non-zero displicement e U, is said to be the zero energy displacement mode ZEM ()
i the functional increment

Arji] = n(e o u, +0) — (e o.u,) =0 Viea)elix X 4
ln accorduance with these definitions, it is evident that if
Viou e xl,, Anlej=0 = &e=0 (3
the mixed element has no ZEM(#) ; and
Vieu)eEx Uy, Arnfal=0 = a=0 (6)

the mixed clement has no ZEM(s). Finally, if

i

Viz.o)eExEZ, Anfu, =0 = u,=0 (N

the mixed element has no ZEM(x). Obviously the 3-ticld mixed element without any ZEM
becomes a stable one when the conditions (5)-(7) are satisfied simultancously.

Considering the functional (1), for an arbitrary strain increment &’ to be independent
of e,

Anfe] = Wee+e) e +e)) — Weaed+ 1 (e a). %)

Note that since the first two terms in (8) are positive definite quadratic forms of the strain,
it follows that

Ve u)eLx Uy, Anfe’]=0 = & =0

and therefore condition (5) is constantly satisfied by the mixed clement. By the way. the
same analysis is also valid for the 3-field hybrid element. Thus we can assert that the 3-field
finite clement based on the Hu-Washizu principle has no ZEM(£). On the other hand. it s
casy to find that, for the mixed clement based on (1),
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Anfo] = I(e.0)+1:(0.u,)
and
Arfu,] = I:(c.u,).

Thus the conditions (6) and (7) can be stated in another manner:

Vie,u,)eExU,, li{(e,0)+I(c,u)=0 = o=0 9

and
YoeZ, Lou)=0 = u,=0 (19)
respectively. [n conclusion, the satisfaction of the above conditions will prevent the appear-

ance of ZEM(o) and ZEM(«) ; (9) and (10) are therefore the stability conditions of the 3-
Sield mixed element.

3. MIXED FORMULATION AND KEEPING RANK CONDITION
The trial functions of a 3-field mixed element are defined as follows. The element strain
& = Y. « = element strain parameter. {n
Here & may be the nodal strain value or the internal parameter of the clement strain. We
will see later that a can always be climinated at the element level without any extra
supplementary condition. So we prefer to take « as the internal parameter of the mixed
clement in order to reduce the size of resulting system equations. Similarly, the element
stress is expressed as
o= ¢ff, B = clement nodal stress (12)
and the clement displacement as
u = Ng, q = element nodal displacement. (13)
We assume that at least r nodal displacements must be constrained in ¢ to prevent the
element rigid-body motion, and the remaining ones in ¢ are denoted by q,. Accordingly,
instead of (13) the displacement trial function will be rewritten as
u, = N,q,. (14)
By means of (11), (12) and (14), the functional (1) may be discretized and expressed as

(2, B,q.) = la'Aa+2"FB+ TG, q,. (15)

From the stationary condition dn = 0, we obtain a sct of discrete equations

Aa+Fg=0
F'a+G,.q, =0;. (16)
Gig=0

In accordance with the positive definite quadratic form {ce, £) in (1), the symmetric matrix
A = f,a ¥ " ey de must be a positive definite one (provided that ¢ does not violate the well-
known independence requirement on the basis function). As a result the strain parameter
@ can be eliminated from (16). and we obtain the following mixed discrete equations
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[»F‘A"F G*]{ﬁ}
G}u 0 Q*} o 4o

B .
Here {q plays the role of the basic discrete parameters of a 3-field mixed element without
*

the rigid body DOF. while 2 becomes a related purameter. Obviously the resulting discrete
matrix in (17) is non-positive definite, but it is invertible provided that the mixed element
has no ZEM.

With reference to formulation (15). the stability condition (9) is now

F

T
V(2. q4) € {2} x {qu]. z"FﬂJrﬂ‘G*q*E[:}[GT}Bﬂ = =0 (8)

or equivalently

p

.
[Gr]ﬁ:() = p=0. (19)

At the same time condition (10) can be expressed as
VBe Bl B'Guqu=0 = q,=0
or cquivalently,
Geqe =0 = q, =0, (20)

(19) and (20), which ensure that the clement has no ZEM(e) and ZEM({u) respectively, are
to be called the keeping rank conditions of the 3-ficld mixed element, which are the necessary
and suflicient conditions for guarantecing the absence ol ZEM at the element level.
If we designate
n, = dim (@)
n, = dim ()
n, = dim{q.)

then there exist two necessary conditions for meeting (19) and (20) respectively. They are

no4n, =y {Zn
and

"y 2 ", .

I short, the positive integers n,, 1, and n, have to satisfy the parameter matching conditions

notn, g za, . 23
They are consistent with the result given by Zienkicwicz and Lefebure (1987). The matching
conditions are very useful in the design of the mixed models even though they are just a set
of necessary conditions for the element stability.
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4. ZEM(o) EXHIBITION AND CONTROL

When condition (19) cannot be satisfied, n, ZEM (o) will appear. and

ny = ng—rank ({GFI:D (24

We denote the general solution of the homogeneous equation in (19) by
B="T:8 (25)

where f is composed on n, arbitrary parameters and can be expressed as

B [0 (0
0 : : .

f=<4 b+ 0 ptkd P b=Y ). (26)
0 \0 \B"n

In terms of (25), (26) and the stress trial function (12), the n, ZEM (o) can be independently
exhibited by

(i) = ¢T,h(). i=12..... . (27)
The sum of them should be

d =Y d(i) = ¢T,. (28)

In order to suppress the above ZEM(a), a control strain g, = ¢,a, is employed and
added to the primary one: e = ya, and we have a modified strain trial function

ey = 2+8y = [Y Y,] {:A}- 29

Here the basis ¢ and ¢,, followed by ¢ and &, are lincarly independent of each other, hence
the set of strains

{en} = E, = EUE,, where Eg = {e,}.

Theorem L. Let 6 be the ZEM(o) appearing in the mixed element based on (e,a,u,). If
ey provides @ with an energy control ;

VZAEEA, [|(8A.&) =0 = d=0 (30)
the modified mixed element based on (g, 0,u,) has no ZEM(o).

Proof. Since e, is independent of g, the encrgy constraint on o'

V(emcu‘)EmeUto Il(am'a)'f'll(dvu*):o (3[)

is equivalent to
{V(e, u,)eExU,, [(e,0)+/:(o,u,)=0 (32a)
Ve, € E,, 1,(¢s,0) = 0. (32b)
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From (32a) we obtain the non-zero solution @ = ¢ as exhibited by (28), and (32b) is then
Va_\EEA. [I(SA'O;) :0
With the introduction of the energy control (30) we have ¢ = ¢ = 0. The result is
ViemWa)eE, x Uy L{(En.0)+ (0 u) =0 = 6 =0, (33)
i.€. the mixed element based on (g,.6.u,) has passed the stability condition (9) and has no
ZEM(o).
It 1s easy to choose a suitable control strain g, for ¢ in (28). We denote
1,(g5.6) = 2lF.p. (34)
where the control matrix F, is a square matrix of order n, it dim (a) = n,. By regulating
the strain basis function ¢, such that [F.| # 0. then the energy control (30) can be achieved.

A reliable trick for the choice of ¥, may be suggested here. If ¢ = ¢T,8 = $f. then it is
only necessary to take €4 = @a,. This is because the resulting control matrix

F. = J ¢" b dr.
must be a positive definite one.

5. ZEM@) EXHIBITION AND CONTROL.

When a 3-ficld mixed clement does not pass the keeping rank condition (20)., it has n,
ZEM(u), and

ny = n, —rank (Gy). (35)

We may denote the non-trivial solution of the homogencous equation in (20) as

my

. =T,qg="1T,>40. (36)

In accordance with the displacement function (14) the ZEM () should be of the form
() = N, T,q(), i=12..., ny, (37)
and the sum of them

a=>3 a0 =N,Txq. (38)

In order to suppress the possible ZEM(u), a control stress ,€ Ly = {64] 18 introduced
into the primary onc: e € Z. Of course o, and o should be lincarly independent of cach
other, and the modified stress

ﬁ}eEuZA.
A

O, =0+a, =[¢ %l{ﬂ
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Theorem 1. Let @ be the ZEM(u) which appear in the mixed element based on (e.a.u,).
If & provided @ an energy control :

VO'_\EZ_\. [:(0’_\.&)=0 = ﬁ=0 (39)
the modified mixed element based on (€. 6.,.uy) has no ZEM(u).

Proof. The zero energy constrain on u,, :

Vo,eXlul,, [;(6n.u,)=0 (40)

is equivalent to
{VO‘GE. l:(oc.u,) =0 (41a)
Vo,eZ,. I.(6y.u,)=0. (41b)

From (41a) we obtain a non-zero solution u, = G. and (41b) is then
Va,eXy [i(oy.0) =10,
Under the encrgy control (39). = u, = 0. Finally,
Vo,eX Ui, o, u,)=0 = u,=10 (42)

This means that the element based on (e, 6,,. u, ) has passed the stability condition (10) and
has no ZEM(u).
Let

dim(By) =n, and [I,(o,, 1) = piG.q. (43)

Regulating the basis function ¢, of the control stress o, such thut |G| # 0. then the energy
control (39) can be achieved.,

6. 3-FIELD HYBRID ELEMENT

Now we consider another kind of 3-field finite element—the 3-ficld hybrid clement,
for which, obviously, the definitions of ZEM in Section 2 are still valid. In the present case,
like the strain parameter «, the stress parameter 8 will also be treated as a local parameter
to be climinated at the element level. Since g will no longer play the role of the basic discrete
parameter, it is possible to set up an equilibrium equation for the hybrid clement in terms
of the displucement parameter q,, only.

In the mixed simultancous eqn (17). the following relationship is included.

(F'AT'F)B = Guq,. (44)

The requircment for obtaining the unique solution of g is that the homogeneous equation
concerning eqn (44) has only one trivial solution, i.e.

(FTA"'F)f=0 = f=0. (45)



222 Y. K. CueunG and € W

The matrix A 'is a positive definite one. hence (43) is equivalent to the following condition :
FB=0 = f=0 (46}

In respect of the 3-field mixed element, (46) is an extra condition which ensures that the
local parameter B can be completely determined by q, and eliminated at the element level.
It s found that (46) is sufficient to satisfy (19). Therefore, instead of the keeping rank
condition of a mixed element (19). (46) should be u keeping rank condition of a 3-field
hvhrid clement. Besides., it has been confirmed that another keeping rank condition of a
mixed element (20) is sull suitable for the present hybrid element.

Note that there exists a necessary condition for satisfving (46), t.e. n, = n,. So the
parameter matching condition (23) should be amended for a 3-field hybrid element, as

ez za, {(47)
The condition (46) may equivalently be expressed by
Yxe{al, 2'Fp=0 = p=0,
or in an energy form
Veell, fipa)=0 = a=1{ (483

Equation (48) together with (10) would be the srabitity condition of the 3-ficld hybrid
clement. Under condition (46) we have

B=T"ATF) "Gy, (49)

By substitution of this inte (18) we obtain the equilibrium equation of the hybrid clement
without rigid-body DOF as follows :

Koty = [GUEF'A ) 'Gulqy = 0. (30)

The exhibition and control of the ZEM appearing in the hybrid clements on the whole are
the same as those in the case of mixed clements except that when we determine the ZEM (o)
of a 3-ficld hybrid element by using formula (25), T,# is no longer the non-zero solution
of the equation

F .
[(,,][f =0 butof the equation Ff =10,

*

The key results obtained in the above sections are summed up in Table L.

7. EXAMPLE

A simple but complete example is presented to illustrate the whole process of the ZEM
analysis. We consider a 2u x 2b rectangular 3-field hybrid clement in Fig. | for the elastic
plane problem. which possesses a constant strain, a constant stress and a bilinear dis-
placement trial function:
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Table 1. ZEM of the 3-field mixed and hybrid elements

Energy
functional

= ce.ed+1,(8.0)+1:(0.us) = !2a"Az+2"FB+p Guge

Classification

3-field mixed element

3-field hybrid element

Element

_ T ETA-Ey -} -
formulalion _FT'_\I_ 'F G‘]{ p} -0 [Ga(F’A~'F) " 'Ge]qe =0
(without G I B=(FFA"'F) 'Gags
"gg(')bg’)dy 1= —A'Fp xa=—A"'FB
Element Yi(e.ue)€E x La, VeeE, [,8.0)=0 = ¢=0
stability l{e.a)+1,(o,ue)=0 = o=0 VoL, Il,(6.us) =0 = ue=0
condition  {yoev  f(oua)=0 = ue=0
Keeping [F]p=o = f=0
rank Gt FF=0 = f=0
condition
Geqe =0 = qe=0 Geqe =0 = qe=0
Parameter
matching  n,+n,_ 2n,2n, nznzn,
condition
d = ¢T,,ﬂ. wherc
‘.8 = non-zero solution of d = ¢T,f. where
ZEM(0) . Tu8 = non-zero solution of
formula [ ][l =0 Fg =0
and G; . ‘ 4 . o th
control (Theorem 1) Take a control strain &4, such (Theorem I) Take a control strain s, such that
that [ {(gy,d) =0 = d=0
[_-(BV\,fi) =) = d= 0
0= NeT, 4. where i =NeT, 4 where
ZEM() T,q = non-zero solution of T4 = non-zero solution of
formula Geqe =0 Geqe =0
and
L_:"nlml (Theorem [I) Take a control stress a,, such (Theorem ) Tuke 4 control stress @,, such

that

I.‘(VA\J.I) =0 =

u=0

that

Ligp@)=0 = =0

SAS 29:2-G

-

Fig. . Constrained rectangular 3-field hybrid element.
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£ = Ev = l x.p = l//1 (51)

8” L l_. X,

g, 1 W /’1
A LY St I M Gl (52)

Ty L IRV

and
u . ‘

u = {}2‘\(“ q={ll\ | AT l’J}(_ (53)

The minimum nodal displacement constraints to prevent the clement rigid-body motion
are shown in Fig. . Accordingly, the element displacement (53) becomes

f . . T ,
Uy = NoQu. Qo =1y 0y uy Uy oy (54)

In accordance with the Hu-Washizu formulation

.

n = J'c[lzﬂ"(‘l:ﬁ—r:'a+a'(l)u,.)]d.'l = la'Ax+a' FR+B'GLq.. (535)
we have the element matrices
A= L ey dA = dabe, (56}
1
F= ~L.p'¢ dd = —4ab 1 . (57)

. 1.

-1 0 101
G. =J d"(ONYdA=ab] 0 -1 0 =1 0} (58)
AC
-1 =1 =1 1

Obviously, the keeping rank condition (46) is now satisficd, so that the hybrid clement has
no ZEM(a). On the other hand, the homogencous cquation G, q, = 0 has the non-zcro
solution

[ 1
-1 0
G=Td= 10 {l,:}
1 0 s
L 0 1]

So the element has two ZEM(u), and they can be exhibited as follows:
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(@) (b)
4 3 4 3
T
\ \ \ |/
\ \ \ i/
\ \ \ I/
= \ V]
- 2 1 2
\’/
Fig. 2. ZEM(u) of the hybrid element based on (2,0, us).
i 1 b—y ab+xy
i=4" ONTa= . T a. 59
" {ﬁ} NeTaq 2ab [\‘(b—y) 0 ]q 9)

The related two ZEM (u) corresponding to
{ 0

} = bt q 2 =
q(n) {o} ind  §(2) {I}

are shown in Figs 2a and 2b respectively.
For the control of the above two ZEM(u) a control stress with two paramcters is

adopted here:

ol
4
en=Sa, ¢ =¢ufla. Pa= {;; } (60)
ol ’

(61)

or

(62)

In terms of (61) and (59) the control matrix in (43) is

G, = J ¢3(DN,T,)dA =0,
At

and the scheme cannot be used to control ZEM(u). With the scheme (62),
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So that the ZEM(u) exhibited in (59) will be controlled, and the moditied stress trial function
is of the form

10 0 v 01(8
6, =6+a,=10 | 0 0 x|{ ' }=¢@uPu (63)
0 0 1 0 0l

It is notable that the requirement of n, 2= n,; in the parameter matching condition (47)
cannot be satisfied by the hybrid element based on (z.4,,.u,). and the element has at least
ny—n, = 5—3 = 2 ZEM(0). Obviously. instead of (57). we now get

1 0 07
01 0
F=-—J lydd= ~4ab | 0 I
A O O
L0 0 0]
FB,. = 0 has the non-zero solution
0 07
g 0
i X
o= {0 o] P
3
10
KRy
and the ZEM(g) would be
a, y 0 P
¢ =14, = T, =10 x { ﬁ“} = ¢f. {64)
A
¢ 0 0

e

Two ZEM(a) corresponding Lo

gy = {:)} and f(2) = {?}

are shown in Fig. 3, and it is clear that they are orthogonal to the assumed constant strain

(a) (b}

=y ay =x

Fig. 3. ZEM(0) of the hybrid element based on (e, 0. Us).
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(S1).1e. j' +&'ddA = 0. Thus the stress parameter §,, cannot be eliminated and should be
solved with the displacement parameter q, simultaneously. In other words. the element
based on the trial function set (g, 6, u, ) can only become a mixed one, not a hybrid one.

For the purpose of constructing a hybrid element the above two ZEM(o) must be
suppressed. According to Theorem I and in view of (64), we choose a control strain in such
a manner,

0
Xy
{15} = fa,. (65)

v
&2 =0 x

0 0
Such that the control matrix in (34) takes the form

- iT - _ b2 0
F.= L¢ $dd = 4ab[0 al} (66)

|F.| # 0, and the ZEM(o) have been controlled. Denoting the modified strain as:

10 0 » 07(=,
Ew=Et+& =0 1| 0 0 x = Py (67)
001 0 olla

then we can state that the 3-ficld hybrid clement based on (e, 6,,.u,) has neither ZEM («)
nor ZEM(a) and must be a stable clement. Actually, it has been confirmed that this 3-ficld
hybrid element is equivalent to Pian’s 5ff stress clement (Pian, 1964) which is based on
(6., u, ) and the moditicd complementary energy/Reissner principle.

8. DISCUSSIONS AND CONCLUSIONS

A theory for ZEM for 3-ficld finite clements has been proposed in this paper. A
systematic study was made on mixed clements and hybrid elements based on Hu-Washizu
principle. Further discussions and explanations will be made here with regard to the
following three problems:

(a) With regard to the convergence problem of mixed/hybrid elements, mechanicians
and mathematicians tend to treat the matter differently, apart from the fundamental
requirement of the completeness of the trial functions. The latter used a rigorous
mathematical expression in the form of an inf-sup condition with the constant inde-
pendent of A to be a necessary and sufficient condition for convergence and uniqueness,
while the former approached the problem from energy principles, and regarded that
the imposition of certain requirements would guarantee the convergence of the solution
of a discretized problem. They are
(i) stability requirements— Hu (1990), stated that the trial functions of the field vari-
ables (generalized forces and gencralized displacements) must be capable of
working. In other words, the trial functions should not include any ZEM which
does not contribute towards the energy functional of the system. Furthermore,
the weak continuity conditions between elements should be satisfied in order to
guarantee that relative rigid body movement exists between elements (Wu and
Cheung. 1991), and

(i) compatibility requirements—for an element with non-conforming trial functions
for both the stresses and displacements, the energy compatibility condition pro-
posed by Wu and Bufler (1991) must be satisfied. This stipulates that the work
done by the non-conforming component u; of the element displacement trial func-
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tions and the element surface force T = T(o) should be zero, i.e.

W= Zﬁa_ T, ds =0. (68)

Otherwise W should be deleted from the energy functional.
In this discussion, we have only considered the ZEM problem connected with
the stability requirement, not the compatibility requirement.

{b) The proposed ZEM analysis is valid for a single typical element. However. it must be
pointed out that satisfying the element stability condition element keeping rank con-
dition can only guarantee that the element will have no ZEM. it will in no way guarantee
that a system of elements will have no ZEM. For a mixed element system there is no
straightforward solution since the displacement continuity condition between elements
can suppress ZEM () but at the same time introduce new ZEM (), while for the stress
continuity condition, the reverse is true. The best solution appears to be the carrying-
out of a patch stability test, since it would be reasonable to say that if the patch of
elements has no ZEM, then the wholc discretized system would also have no ZEM.
This is in line with the so-called local inf-sup condition with the constant independent
of & in mathematics and the mathematical basis for such a patch test was proposed by
Zhou (1986). The implementation method and the formulae for the patch stability test
of 2-ficld elements has already been given by Wu (1990), and there should be no
ditficulty in extending the formulace to a 3-field clement situation. For example, if a
patch of clement is regarded as a single clement, then the keeping rank conditions (19)
and (20) for the 3-ficld mixed clements will become the formulace for the stability test
of the patch of clements.

(¢) It s common practice to introduce internal parameters 4 (to define the element’s
internal displacements) in order to improve the numerical characteristics of an element
(Cheung and Chen, 1988 ; Chen and Cheung, 1987). The internal displacement ficld s
then

and the clement energy function (15) must be revised to

n=la'Aa+a'Fp+p'(G, (’;A]{q;}. (69)

Fortunately, no change is necessary in the ZEM analysis for this type of element except
that the following modifications will have to be observed :

9
Qu — il
Gu =[Gy G
and
n,, —n, +n,. (n; =dim(4)).
However, if we wish to climinate 4 at the element level, then the following additional
condition must also be satisfied

GAi=0 = i=0. (70)

It is not difticult to prove that (70) is in fact a sufficient condition to guarantee
that static condensation can be effected for the mixed/hybrid elements with internal
displacements.
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(d) The ZEM analysis presented in this paper has been made for a single element. For a
discrete system it would be necessary to consider the effect of element assembly and
then carry out a patch stability test (Wu, 1990) in accordance with Table I. The
above observation is certainly true for mixed elements in which both the stress and
displacement are continuous at the element interface or the common nodes of elements.
However. in the case of 3-field hybrid elements, because the continuity of displacements
at the element interface or the common nodes of elements can only prevent the appear-
ance of additional ZEM(u). it is possible to conclude that provided the parameter
matching condition (47) has been satisfied for the various combination of elements, the
stability for a discrete system can in fact be guaranteed by observing the keeping rank
conditions ((20) and (46)) of an individual hybrid element.
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